Skip to main content

ISLA Santarém 2129

Artificial Intelligence

Web Systems and Technology Engineering
  • ApresentaçãoPresentation
        
  • ProgramaProgramme
    Introduction to Artificial Intelligence and its applications Intelligent agents and logical agents Knowledge Representation, Reasoning, and Logic Structures and Objects Knowledge-Based Agents Representation, Reasoning, and Logic  Transforming Knowledge into Action  Propositional, Predicate, Modal, and Temporal Logic  Introduction to Logic Programming  Problem-Solving Methods  Search Agents  Problem Formulation  Informed and Uninformed Search  Evolutionary Computation  Constraint Satisfaction Problems  Problems Considering Adversaries  Modern Heuristics  Machine Learning Classification and Categorization  Inductive Learning  Neural Networks  Data Science  Deep Learning 
  • ObjectivosObjectives
    Study the main areas of Artificial Intelligence: Intelligent agents, Search, Problem-solving methods, Heuristics and meta-heuristics, Knowledge Representation and Reasoning, and Machine Learning. Skills: Identify problems that can be solved with Artificial Intelligence; Represent knowledge with computational structures; Programming in logic; Understand and apply the main problem-solving algorithms automatically; Apply Machine Learning techniques; Implement the main algorithms in C#; Use Python AI libraries.
  • BibliografiaBibliography
    Aggarwal, C. C. (2021). Artificial Intelligence A Textbook. Springer. Chopra, D., & Khurana, R. (2023). Introduction to Machine Learning with Python. Bentham Science Publishers. Miller, B. N., & Ranum, D. L. (2023). Problem solving with algorithms and data structures using Python (4th ed.). Franklin, Beedle & Associates. Russell, S., & Norvig, P. (2021). Artificial intelligence: a modern approach. Pearson. Teoh, T. T., & Rong, Z. (2022). Artificial Intelligence with Python. Springer Singapore.
  • MetodologiaMethodology
    The teaching methodology involves the exposure of each topic of content, with practical application immediately through exercises and work, since this course is essentially laboratory practice. Therefore, the Problem Based Learning (ABRP) methodology will be used.
  • LínguaLanguage
    Português
  • TipoType
    Semestral
  • ECTS
    6
  • NaturezaNature
    Mandatory
  • EstágioInternship
    Não
  • AvaliaçãoEvaluation

    Avaliação contínua:

    • Trabalho prático (Relatório e projeto); 60%;
    • Teste final prático; 40%.

    Avaliação Final:

    Todos os estudantes que não tenham concluído com sucesso a avaliação continua podem realizar um exame final teórico-prático (100%) na época de avaliação definida pela instituição.